Learning Determinantal Point Processes

نویسندگان

  • Alex Kulesza
  • Ben Taskar
چکیده

Determinantal point processes (DPPs), which arise in random matrix theory and quantum physics, are natural models for subset selection problems where diversity is preferred. Among many remarkable properties, DPPs other tractable algorithms for exact inference, including computing marginal probabilities and sampling; however, an important open question has been how to learn a DPP from labeled training data. In this paper we propose a natural feature-based parameterization of conditional DPPs, and show how it leads to a convex and efficient learning formulation. We analyze the relationship between our model and binary Markov random fields with repulsive potentials, which are qualitatively similar but computationally intractable. Finally, we apply our approach to the task of extractive summarization, where the goal is to choose a small subset of sentences conveying the most important information from a set of documents. In this task there is a fundamental tradeoff between sentences that are highly relevant to the collection as a whole, and sentences that are diverse and not repetitive. Our parameterization allows us to naturally balance these two characteristics. We evaluate our system on data from the DUC 2003/04 multidocument summarization task, achieving state-of-the-art results. Disciplines Computer Sciences Comments Learning Determinantal Point Processes, A. Kulesza, and B. Taskar. Conference on Uncertainty in Artificial Intelligence (UAI), Barcelona, Spain, July 2011. Authors retain the right to post a pre-print version of the journal article on Internet web sites including electronic pre-print servers, and to retain indefinitely such version on such servers or sites. The right to post a revised personal version of the text of the final journal article (to reflect changes made in the peer review process) on the author's personal or institutional web site or server, incorporating the complete citation and with a link to the Digital Object Identifier (DOI) of the article This conference paper is available at ScholarlyCommons: http://repository.upenn.edu/cis_papers/542 Learning Determinantal Point Processes Alex Kulesza Dept. of Computer and Information Science University of Pennsylvania Philadelphia, PA 19104 [email protected] Ben Taskar Dept. of Computer and Information Science University of Pennsylvania Philadelphia, PA 19104 [email protected]

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Determinantal Point Processes for Machine Learning

determinantal point processes for machine learning is available in our digital library an online access to it is set as public so you can get it instantly. Our books collection hosts in multiple countries, allowing you to get the most less latency time to download any of our books like this one. Merely said, the determinantal point processes for machine learning is universally compatible with a...

متن کامل

Advances in the Theory of Determinantal Point Processes

The theory of determinantal point processes has its roots in work in mathematical physics in the 1960s, but it is only in recent years that it has been developed beyond several specific examples. While there is a rich probabilistic theory, there are still many open questions in this area, and its applications to statistics and machine learning are still largely unexplored. Our contributions are...

متن کامل

Fixed-point algorithms for learning determinantal point processes

Determinantal point processes (DPPs) offer an elegant tool for encoding probabilities over subsets of a ground set. Discrete DPPs are parametrized by a positive semidefinite matrix (called the DPP kernel), and estimating this kernel is key to learning DPPs from observed data. We consider the task of learning the DPP kernel, and develop for it a surprisingly simple yet effective new algorithm. O...

متن کامل

Kronecker Determinantal Point Processes

Determinantal Point Processes (DPPs) are probabilistic models over all subsets a ground set of N items. They have recently gained prominence in several applications that rely on “diverse” subsets. However, their applicability to large problems is still limited due to theO(N) complexity of core tasks such as sampling and learning. We enable efficient sampling and learning for DPPs by introducing...

متن کامل

Determinantal point processes

In this survey we review two topics concerning determinantal (or fermion) point processes. First, we provide the construction of diffusion processes on the space of configurations whose invariant measure is the law of a determinantal point process. Second, we present some algorithms to sample from the law of a determinantal point process on a finite window. Related open problems are listed.

متن کامل

Open Loop Hyperparameter Optimization and Determinantal Point Processes

We propose the use of k-determinantal point processes in hyperparameter optimization via random search. Compared to conventional approaches where hyperparameter settings are sampled independently, a k-DPP promotes diversity. We describe an approach that transforms hyperparameter search spaces for efficient use with a k-DPP. Our experiments show significant benefits over uniform random search in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011